
1YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

YAPC Europe 2007YAPC Europe 2007

v2.0
(translated, edited & augmented from French Perl Workshop 2006 talk)

2YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

““Kwalitee”?Kwalitee”?
✗ Definition attempt

✗ “Kwalitee” is an approximation of “Quality”

✗ Nobody knows what it is actually...

✗ Anyway, we believe we're able to recognize it when we see it!

✗ It's mainly a matter of confidence

✗ Built through passed tests (but it's not enough as we'll see later)

✗ Yet, absence of bugs (read “unfound”) does not imply Kwalitee!

✗ Although a correlation exists if tests functional coverage is decent

✗ “Go ahead bug, make my day!”

✗ A bug is a difference between expectation and implementation

✗ It is also a difference between test, documentation & code

✗ If documentation is missing, this is a bug indeed!

3YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Achtung!Achtung!

* Truth is, there is no truth.

(including this one)**

** Truth is N
O
T out there!

4YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

When & What When & What 11

✗ Ages before

✗ Literature

✗ CPAN

✗ Articles, conferences, /Perl Mon(k|ger)s/, etc.

✗ “Read. Learn. Evolve.” – Klortho the Magnificent

✗ Before

✗ Generate module skeleton

✗ Use an OO class builder (if applicable)

✗ Write tests (a tad of XP in your code)

✗ While (coding)

✗ Document in parallel (and why not, before?)

✗ Add more tests if required

http://www.extremeprogramming.org/rules/testfirst.html

5YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

When & What When & What 22

✗ After (between coding & release)

✗ Test (test suite – acceptance and non-regression)
✗ Measure POD coverage

✗ Measure tests code coverage

✗ Measure tests functional coverage (Ha! Ha!)

✗ Generate synthetic reports
✗ For one-glance checking purposes or for traceability's sake

✗ Way after (release)

✗ Refactor early, refactor often
✗ Test suite (non-regression) should ensure nothing got broken in the process

✗ Following a bug report...
✗ First add test(s) to reproduce the code defect(s)

✗ Then – and only then – nuke bug(s) out

✗ Test again (test suite – non-regression)

6YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Hey! Hold on! Social Perl?Hey! Hold on! Social Perl?
✗ What's social about this ramble anyway?

✗ “Always code as if the guy who ends up maintaining your code will be
a violent psychopath who knows where you live.” – Damian Conway

✗ From SICP's preface

✗ “Thus, programs must be written for people to read, and only
incidentally for machines to execute.”

http://mitpress.mit.edu/sicp

7YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Pre-requesites Pre-requesites 11

✗ SCM – source code management (~ history + //)

✗ For example: cvs, subversion, svk, darcs, git, etc.

✗ Beware! Needs some kind of etiquette (tagging, branching, etc.)

✗ Use a good “difference engine” (GNU diff), possibly w/ GUI (tkdiff)

✗ RT – request tracker (~ intention)

✗ For example: cvstrac, trac, RT, bugzilla, etc.

✗ Text editor with syntax highlighting

✗ For example: NEdit, vi, emacs, etc.

✗ Consistent coding “rules” (OK, “best practices”)

✗ It might even be the “good” ones ;^)

✗ Cf PBP (book) + Perl::Critic (module) + perltidy (tool)

http://search.cpan.org/dist/Perl-Critic/

8YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Pre-requesites Pre-requesites 22

✗ An IDE might also be of some help

✗ Like Eclipse + Perl plugin (but I'm not too eager to try ;^)

✗ Indeed, we may not be allowed to choose...

✗ SCM, RT, “good” practices or even the text editor :^(

✗ Due to OS, “corporate” practices, customer, etc.

✗ If you don't have what you like, you should like what you have!

✗ But we choose to use compiler directives

✗ use strict; # for code
use warnings; # for test

✗ It is even strongly advised!

✗ Else: “Some people have tried...”

9YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Pre-requesites Pre-requesites 33

✗ “They had some problems!”

10YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Do not reinvent the wheel Do not reinvent the wheel 11

✗ Avoid repeating others' errors

✗ Hard to escape from NIH syndrome (“Not Invented Here”), isn't it?

✗ Less hubris, more laziness!

✗ Consider using a CPAN module instead

✗ “I code in CPAN, the rest is syntax.” – Audrey Tang

✗ But first do a module review

✗ Practical utility

✗ Configurability

✗ Active development (if applicable – might have reached stability)

✗ Anyway, if you still want to reinvent the wheel...

✗ At least, try to reinvent a better one!

11YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Do not reinvent the wheel Do not reinvent the wheel 22

✗ Some not-so-uncommon tasks...

✗ Sometimes even a bore to code!

✗ Command line parsing

✗ Getopt::Long (an all-time classic)

✗ Getopt::Euclid (POD is used to describe switches)

✗ Configuration handling

✗ Config::Std (~ M$ INI)

✗ YAML

✗ And no way, no XML (“not even in your wildest dreams”)!

✗ Off the top of my head... (cf Phalanx Top 100)

✗ HTML::Parser, XML::Twig, Spreadsheet::ParseExcel,
Parse::RecDescent, RegExp::Common, List::MoreUtils, etc.

http://qa.perl.org/phalanx/

12YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Do not reinvent the wheel Do not reinvent the wheel 33

✗ Literature

✗ Perl cookbook (Christiansen & Torkington)

✗ Perl best practices (Conway)

✗ Mastering algorithms with Perl (Orwant, Hietaniemi & MacDonald)

✗ Perl testing: a developer's handbook (Ian Langworth & Chromatic)

✗ The pragmatic programmer (Hunt & Thomas)

✗ Lessons learned in software testing (Kaner, Bach & Pettichord)

✗ Refactoring: Improving the Design of Existing Code (Fowler et al.)

✗ Experiences

✗ User groups (Perl Mongers, Perl Monks)

✗ Conferences (Perl Workshops, YAPC)

✗ Articles (Perl Journal, perl.com)

http://www.perl.com/

13YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Programmer's triptychProgrammer's triptych

TESTSTESTS

CODECODE

PODPOD LazinessLaziness

ImpatienceImpatience

HubrisHubris

14YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

At the beginning...At the beginning...
✗ Build correctly your own module in the 1st place

✗ A Perl module is a precise file tree structure

✗ Easy to forget one of its numerous files (see José's guide)

✗ Hard to remember the syntax of every file

✗ Use a dedicated CPAN module

✗ For example Module::Starter (or even Module::Starter::PBP)

✗ Creates correct-by-construction templates to fill out

✗ Dedicated tests will check if they have been tampered with

✗ Use an OO class builder (if applicable)

✗ Like Class::Generate, Class::MethodMaker, Class::Accessor, etc.

✗ Or even Class::Std for an inside-out implementation

http://www.perlmonks.org/?node_id=431702

15YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Testing for dummies Testing for dummies 11

✗ Test = confront intention & implementation

✗ Using techniques (“directed” or “constrained random” tests)

✗ And a reference model (OK ~ no ≠ vs reference)

✗ Intention

✗ Written in a specification, a test plan, etc.

✗ When these documents are available indeed!

✗ Not-so-formal stuff for they are meant to be read by humans

✗ So obviously prone to interpretation

✗ Implementation

✗ Code (+ documentation)

✗ Split by units (modules = ∑ functions)

16YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Testing for dummies Testing for dummies 22

✗ Test-driven development (TDD)

✗ Unit tests (might be xUnit-compliant or not)

✗ Acceptance tests (i.e., what the customer has paid for)

✗ Test suite ≈ executable specification

✗ Somehow more formal (or somehow less informal ;^)

✗ “Old tests don't die, they just become non-regression tests!”
– chromatic & Michael G Schwern

✗ But a passed test does not mean a lot!

✗ It should even be frustrating (“OK? So what?”) for a tester!

✗ To put it (again) the blunt way...

✗ “Program testing can be used very efficiently to show the
presence of bugs, but never to show their absence.”
– Edsger Dijkstra (EWD288)

http://search.cpan.org/dist/Test-Unit/
http://www.wgz.org/chromatic/
http://schwern.org/~schwern/
http://fr.wikipedia.org/wiki/Edsger_Dijkstra
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD288.html

17YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Testing for dummies Testing for dummies 33

✗ Tester should ask 2 fundamental questions

✗ “Is this correct?”

✗ “Am I finished?”

✗ “Is this correct?”

✗ Are all suite tests 100% OK?

✗ TAP protocol's role via Test::More + Test::Harness modules

✗ With SKIP/TODO TAP concepts, it's a closed-answer Q (i.e., 100%)

✗ “Am I finished?”

✗ Did my tests actually stressed all my lines of code?

✗ Code coverage concept (associated with metrics)

✗ Falls into Devel::Cover module's domain

✗ But... do my code lines really implement meant functionality?

http://search.cpan.org/dist/Test-More/
http://search.cpan.org/dist/Test-Harness
http://search.cpan.org/dist/Devel-Cover

18YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Testing for dummies Testing for dummies 44

✗ Code coverage ≠ functional coverage

✗ It's actually very tempting to pretend latter is equivalent to former

✗ Code coverage

✗ A given code might be 100% covered, yet...

✗ It could miss the part that does implement meant functionality!

✗ Functional coverage

✗ A better answer to the “am I done?” question

✗ Linked to all possible input combinations of a function (cf CRT)

✗ Damned! How do I measure FC in Perl?

✗ It is possible with recent HDVL like SystemVerilog

✗ It is listed in TODOes of Test::LectroTest module

http://www.systemverilog.org/
http://search.cpan.org/dist/Test-LectroTest

19YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Testing for dummies Testing for dummies 55

✗ Code coverage ≠ functional coverage

✗ The trivial following counter-example
✗ =head2 foo

 Returns 'foo' to 'bar' and 'gabuzomeu' to 'baz'. Returns undef else.

=cut

sub foo {
 my $s = shift;

 return 'gabuzomeu' if $s eq 'baz';

 undef;
}

use Test::More tests => 2;

is (foo('baz'), 'gabuzomeu', "returns 'gabuzomeu' if 'baz'");
is (foo('foo'), undef, "returns undef if unknown input");

✗ Reaches 100% CC... but does not implement foo ('bar') = 'foo'!
✗ ---------------------------- ------ ------ ------ ------ ------ ------ ------

File stmt bran cond sub pod time total
---------------------------- ------ ------ ------ ------ ------ ------ ------
t_foo.t 100.0 100.0 n/a 100.0 n/a 100.0 100.0
Total 100.0 100.0 n/a 100.0 n/a 100.0 100.0
---------------------------- ------ ------ ------ ------ ------ ------ ------

20YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

use strict;

package Foo;
use Carp::Assert::More;

...

=head2 bar
 bar (baz)

Rince baz.
=cut

sub bar {
 my $baz = shift;
 assert_nonblank $baz;
 # ...
}

...

lib/Foo.pm

t/13-bar.t

use warnings;

use Test::More;

plan(tests=>N);

use_ok('Foo');

...

is_deeply(
 bar ($baz),
 refbar ($baz),
 'baz au bar'
);

...

Unit testsUnit tests

stimulus

ƒ()

≈ TAP:
OK, !OK
SKIP /
TODO

Test::More
is(), is_deeply(), ...

reference model

21YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

TAP protocol TAP protocol 11

✗ “Test Anything Protocol”

✗ Separation between result flow and results interpreter

✗ Designed by Perl folks but actually language-agnostic

✗ The function to test is seen as a black-box

✗ Test program only has to supply the interpreter with a TAP flow

✗ Using ad'hoc toolbox (a module of course)

✗ For example, Test::More module (plan(), use_ok(), is(), etc.)

✗ Number of tests to perform is declared first

✗ Test “plan” (a bit shallow IMHO vs – overkill? – IEEE Std 829)

✗ Test is failed if M actual tests ≠ N expected tests

✗ Since any item may crash the whole test sequence before the end

http://search.cpan.org/dist/Test-More

22YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

TAP protocol TAP protocol 22

✗ Test “plan”

✗ 1..N (todo X Y)?

✗ Tests

✗ ok X - description

✗ not ok X - description

✗ ok Y # SKIP why

✗ not ok Y # TODO why

✗ SKIP

✗ Skip test because of an external factor (missing module, OS, etc.)

✗ TODO

✗ Not yet implemented functionality (might nevertheless be OK)

23YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

TAP protocol TAP protocol 33

✗ Cf Test::Tutorial talk

✗ TAP and much, much more by chromatic & Michael G Schwern

✗ A few TAP interpreters

✗ Test::Harness

✗ Test::TAP::Model (IM built upon TAP flow -> Test::TAP::HTMLMatrix)

✗ More about this topic...

✗ Specification within TAP module

✗ Wikipedia entry: Test_Anything_Protocol

✗ Curtis “Ovid” Poe's talk: “TAP::Parser Will Be Test::Harness 3.0”

✗ chromatic's article: “An Introduction to Testing”

✗ Web site: http://testanything.org/

http://www.wgz.org/chromatic/perl/Test-Tutorial.pdf
http://search.cpan.org/dist/Test-Harness
http://search.cpan.org/dist/Test-TAP-Model/
http://search.cpan.org/dist/TAP/
http://search.cpan.org/dist/Test-TAP-HTMLMatrix/
http://search.cpan.org/dist/TAP
http://en.wikipedia.org/wiki/Test_Anything_Protocol
http://vienna.yapceurope.org/ye2007/talk/475
http://search.cpan.org/dist/TAP-Parser/
http://www.perl.com/pub/a/2001/12/04/testing.html
http://testanything.org/

24YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Test::HarnessTest::Harness
✗ make test

✗ % make test
PERL_DL_NONLAZY=1 /usr/local/bin/perl "-MExtUtils::Command::MM" \
 "-e" "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t

t/00-load.........................ok 2/6# Testing SOCK v1.0.2, \
 Perl 5.008007, /usr/local/bin/perl
t/00-load.........................ok

t/01-rip_fmxml....................ok
t/02-rip_fmxml_again..............ok
t/03-rip_register_bit_fields......ok
t/04-parse_fmxml_datasheet........ok
t/05-rip_fmxml_table..............ok
t/06-evaluate.....................ok
t/07-scavenge_full_description....ok
t/08-spirit_version...............ok
t/09-frontend_tools...............ok

t/boilerplate.....................ok
t/pod-coverage....................ok
t/pod.............................ok

All tests successful.
Files=13, Tests=141, 40 wallclock secs (20.52 cusr + 1.12 csys = 21.64 CPU)

Functional
tests

POD
tests

Synthesis

Traceability

25YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

TAP matrix TAP matrix 11

✗ A synthetic representation of test suite results

✗ Handy since test population is most likely to grow a lot, isn't it?

✗ Through a dedicated interpreter

✗ Test::TAP::Model::Visual module

✗ This interpreter analyzes TAP flow to build a TTM IM

✗ TTM IM is in turn translated into HTML (Test::TAP::HTMLMatrix)

✗ Very easy to use
✗ use Test::TAP::Model::Visual;

use Test::TAP::HTMLMatrix;

$ttm = Test::TAP::Model::Visual->new_with_tests(<t/*.t>);
$v = Test::TAP::HTMLMatrix->new($ttm);

open FH, "> matrice.html";
print FH $v->html;

http://search.cpan.org/dist/Test-TAP-Model-Visual/
http://search.cpan.org/dist/Test-TAP-HTMLMatrix/

26YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

TAP matrix TAP matrix 22

✗ Our previous make test now looks like

27YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

TAP matrix TAP matrix 33

✗ Yet another example: data transformation

28YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Code coverage Code coverage 11

✗ Simply load Devel::Cover module during test

✗ Beware! Increases CPU load!

✗ % cover -delete
% HARNESS_PERL_SWITCHES=-MDevel::Cover make test
% cover -report html

29YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Code coverage Code coverage 22

✗ Statements

✗ Were all instructions executed?

✗ Branches

✗ Checks conditional branches alternatives (if, ?:)

✗ Conditions

✗ Checks logical expressions possibilities

✗ Subroutines

✗ Were all functions called?

✗ POD

✗ Usage of POD::Coverage module

http://search.cpan.org/dist/POD-Coverage/

30YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

DocumentationDocumentation
✗ Tested & covered code is not so bad, but...

✗ Documented code is way better!

✗ Documentation is written in POD (“Plain Old Doc”)

✗ Its syntax should be checked with Test::POD module

✗ Via t/pod.t test (created by Module::Starter module)

✗ POD coverage

✗ Measured by Test::POD::Coverage module

✗ Verifies that every function has an associated POD documentation

✗ Practically speaking, “only” checks for
✗ =item foo ... =cut

✗ =head foo ... =cut

✗ Via t/pod-coverage.t test (created by Module::Starter module)

http://perldoc.perl.org/perlpodspec.html
http://search.cpan.org/dist/Test-POD
http://search.cpan.org/dist/Module-Starter/
http://search.cpan.org/dist/Test-POD-Coverage
http://search.cpan.org/dist/Module-Starter/

31YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

KwaliteeKwalitee
✗ For a more exhaustive definition see CPANTS site

✗ “CPAN Testing Service” – http://cpants.perl.org/kwalitee.html

✗ Defines Kwalitee metrics (“ALPHA – Hic sunt dracones!“)

✗ Reckon Kwalitee metrics w/ Test::Kwalitee module

✗ Simply add t/kwalitee.t test to test suite:
✗ eval { require Test::Kwalitee };

exit if $@;
Test::Kwalitee->import;

✗ ok 1 - extractable
ok 2 - has_readme
ok 3 - has_manifest
ok 4 - has_meta_yml
ok 5 - has_buildtool
ok 6 - has_changelog
ok 7 - no_symlinks
ok 8 - has_tests
ok 9 - proper_libs
ok 10 - no_pod_errors
ok 11 - use_strict
ok 12 – has_test_pod
ok 13 - has_test_pod_coverage

http://cpants.perl.org/
http://cpants.perl.org/kwalitee.html
http://en.wikipedia.org/wiki/Here_be_dragons
http://search.cpan.org/dist/Test-Kwalitee/

32YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

AssertionsAssertions
✗ Describe working hypothesis of a function

✗ Its limits, what it does not know how to handle at all

✗ Better crash the whole program as soon as possible...

✗ Rather than let it wildly go into an unpredicted direction!

✗ A crash because of an assertion is often easier to solve

✗ “Dead programs tell no lies!”
– Hunt & Thomas in The Pragmatic Programmer

✗ Assertions from Carp::Assert::More module

✗ Simple.................. assert_ + (is, isnt, like, defined, nonblank)

✗ Numerical................ assert_ + (integer, nonzero, positive, ...)

✗ Reference...assert_ + (isa, nonempty, nonref, hashref, listref)

✗ Array/hash.......................................assert_ + (in, exists, lacks)

http://search.cpan.org/dist/Carp-Assert-More

33YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Test::LectroTest Test::LectroTest 11

✗ Traditional tests are so-called “directed”

✗ Sequences of stimuli and comparisons to expected values

✗ But we cannot possibly think about everything (# of combinations)

✗ An alternative is “Constrained Random Testing”

✗ Let the machine do the dirty job instead, (pseudo-)randomly

✗ Using Test::LectroTest module

✗ Stick a type to each function parameter (argh! types in Perl?)

✗ Add constraints to parameters (~ restrain to sub-ensembles)

✗ Do N iterations, measure FC, tweak constraints, goto 0

✗ Not yet used in production but it's cooking!

✗ Alter-ego in hardware verification world is (coded in SystemVerilog)

http://seach.cpan.org/dist/Test-LectroTest/
http://www.systemverilog.org/

34YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Test::LectroTest Test::LectroTest 22

✗ The following code
✗ use Test::LectroTest::Compat; # ::Compat allows for Test::More interfacing

use Test::More tests => 1;

sub ref_foo {
 { bar => 'foo', baz => 'gabuzomeu' }->{shift()};
}

my $property = Property {

 ##[s <- Elements('foo', 'bar', 'baz')]##

 is(foo($s), ref_foo($s), 'foo / ref_foo');

}, name => 'every possible foo input' ;

holds($property, trials => 100); # proves that property "holds" over 100 random inputs

✗ Proves that foo ('bar') ≠ 'foo'
✗ # Failed test 'property 'every possible foo input' falsified in 4 attempts'

in lt_foo.t at line 30.
got: undef
expected: 'foo'
Counterexample:
$s = "bar";

✗ FC ≈ statistics over sets of input values

Reference model

Constraints on inputs

Comparison to reference

35YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Refactoring 101Refactoring 101
✗ Refactor early, refactor often

✗ Restlessly fight ever-growing entropy

✗ Due to bug fixes, new features or... “clever tricks”!

✗ Test suite should ensure nothing got broken in the process (see FC)

✗ Beware! Only on development branch!

✗ Production branch should remain untouched unless proven buggy

✗ Beware! Neither add any feature nor fix any bug!

✗ Only make the code more concise/readable/testable... elegant!

✗ KISS principle: “Simplicity is pre-requisite for reliability.” – EWD498

✗ Commit by small changeset increments (easier to trace/rollback)

✗ Refactoring 102...

✗ See Michael G Schwern's talk: “Tales Of Refactoring!”

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD498.html
http://www.pobox.com/~schwern/talks/Refactoring

36YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Non-executive summary...Non-executive summary...
✗ A priori

✗ Read, learn and do not hesitate to ask questions (then evolve ;^)

✗ Use field-proven tools (SCM, RT, editors, etc.)

✗ Have “good” practices

✗ Do not reinvent the wheel

✗ Write tests (and even documentation if you dare!) first

✗ A posteriori

✗ Use TAP test protocol and one of it's dedicated interpreters

✗ Analyze code coverage (≠ FC!) ratios and POD coverage ratios

✗ Insert assertions into your code

✗ Generate synthetic test reports

✗ Even let the machine do the dirty work instead with CRT!

37YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Social engineeringSocial engineering
✗ Like a lot of human activities...

✗ There is technique and there is commitment

✗ Technique

✗ I've been ranting about this for 40 (darn long isn't it?) minutes

✗ And this is far from being exhaustive!

✗ Commitment

✗ Without motivation, no Kwalitee!

✗ This is a path (to follow) rather than a destination (to reach)

✗ One last quote as a conclusion...

✗ “At that time (1909) the chief engineer was almost always the chief
test pilot as well. That had the fortunate result of eliminating poor
engineering early in aviation.” – Igor Sikorsky

38YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

Questions?Questions?

39YAPC 2007, Vienna, August 28th–30th, Xavier Caron <maspalio@free.fr>

Module KwaliteeModule Kwalitee

On the web...On the web...
✗ Hoplites just want to have fun...

✗ Kwalitee: http://qa.perl.org/phalanx/kwalitee.html

✗ Modules CPAN

✗ Module::Starter, Module::Starter::PBP

✗ Carp::Assert, Carp::Assert::More

✗ Devel::Cover

✗ Test::More, Test::Harness

✗ Test::POD, Test::POD-Coverage

✗ Test::TAP::Model, Test::TAP::HTMLMatrix

✗ Test::LectroTest

✗ Talks

✗ Test::Tutorial, Devel::Cover & Test::LectroTest

http://qa.perl.org/phalanx/kwalitee.html
http://search.cpan.org/dist/Module-Starter/
http://search.cpan.org/dist/Module-Starter-PBP/
http://search.cpan.org/dist/Carp-Assert
http://search.cpan.org/dist/Carp-Assert-More
http://search.cpan.org/dist/Devel-Cover
http://search.cpan.org/dist/Test-More
http://search.cpan.org/dist/Test-Harness
http://search.cpan.org/dist/Test-POD
http://search.cpan.org/dist/Test-POD-Coverage
http://search.cpan.org/dist/Test-TAP-Model
http://search.cpan.org/dist/Test-TAP-HTMLMatrix
http://search.cpan.org/dist/Test-LectroTest
http://www.wgz.org/chromatic/perl/Test-Tutorial.pdf
http://modperlcookbook.org/~geoff/slides/OSCon/2006/devel_cover-printable.pdf.gz
http://community.moertel.com/ss/space/Talk+-+Free+Unit+Tests+In+Perl+with+LectroTest

