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ABSTRACT

The building from scratch of a SystemVerilog testbench using VMM methodology.

Stressed  DUT  is  the  AHB-Lite  compliant  bus  matrix  Atmel  IP  which  boasts  crossbar  and
arbitration  features.  A  bottom-up  approach  was  used  starting  from  DUT  through  interface,
transactor, channel, generator, monitor, and scoreboard objects. Since SystemVerilog+OpenVera
interoperability is not yet available – but scheduled for VCS 2006.06 release – AMBA VIP
instances had to be replaced with home-made AHB master, slave and monitor alter ego. These
makeshift implementations are most likely to be eventually replaced by their VIP counterparts.
Coverage techniques are also used to get a qualitative and  quantitative feedback on actually
simulated transactions, hence on each corner-case sets of constraints.

Besides  pipe-cleaning,  our  primary  aim  is  to  learn  through  this  ongoing  experiment
SystemVerilog, AMBA VIP and VMM. This will in turn help us to assert VMM acceptance
within Atmel design or protoverification groups.
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1 Introduction
IP verification is casually addressed by RTL designers with “conventional” techniques based on
“good old”  Verilog directed testing. Problem is, this kind of testing only copes with what the
simulator  is  explicitly told  to  check.  A  way  to  address  this  inherent  limitation  is  by  using
coverage-driven  CRT (“Constrained  Random Testing”)  techniques.  This  way,  the  testbench
randomly  “pushes”  the  DUT  (“Device  Under  Test”)  in  every  possible  direction,  the  only
limitations  being  simulation  time  and  constraints  sets.  Emerging  technologies  like
SystemVerilog – or not-so emerging ones like Vera or E – allow for such a verification paradigm
shift. This emergence comes with its own bundle of technical incertitudes but also questions
(again)  who  is  actually  doing  the  verification  job.  Is  this  still  part  of  an  RTL  designer
prerogatives or should it be delegated to a dedicated verification engineer?

We already had a promising experience with Vera+RVM+VIP combo. Vera gets the job done,
RVM (“Reuse Verification Methodology”) is – albeit  complex – cleverly designed and used
VIPs (“Verification IPs”) were stable enough for our requirements. But there is a downside since
both RVM and its Vera language implementation are proprietary. Obviously, we would rather
use a potentially vendor-free and industry-standard one. Potentially is the key word as we'll see
below...

SystemVerilog language – as per IEEE P1800 LRM (“Language Reference Manual”) – seemed
to be indeed what we needed. We wanted to keep on using sensible RVM – under its  VMM
(“Verification Methodology Manual”) evolution – and field-proven VIPs. So we devised another
experiment, a kind of “proof of concept” about using SystemVerilog testbench-related features,
hot  off-the-press  VMM  and  VIPs.  We  “wanted  to  believe”  SystemVerilog  to  be  our  next
language of choice for verification purposes although its CAD tool support is not total yet. To be
fair, as we were writing this paper, no other CAD tool than VCS simulator supported the –
mostly class-oriented – SystemVerilog subset required by VMM.

VMM is a meaty methodology indeed which skyrockets quite high in terms of abstraction. The
purpose of this paper is to decipher it by starting from the bottom DUT to progressively climb up
the abstraction ladder.
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2 Overview

2.1 Stressed IP
Atmel proprietary HMATRIX1 IP was used as a pipe-cleaner. It is an APB-configurable, AHB-
Lite compliant bus matrix with crossbar and arbitration features. It was chosen mainly for its
mid-level complexity which allowed us to concentrate more on testbench-related features than
sheer IP-level tricks.

This rather protocol-oriented IP had one additional challenge – namely its genericity – because
of it's RTL source code, automatically generated by a Perl script. As we'll see later on, this would
impact chosen TB (“testbench”) structure.

2.2 Testbench at a glance
A  SystemVerilog,  VMM-compliant  TB  is  most  likely  to  be  complex.  Like  in  any  kind  of
engineering  activity,  complexity  is  to  be  wrangled  by  using  abstraction  and  well-defined
interfaces. The former is achieved through OO (“Object Oriented”) paradigm and so is the latter
with additional SV-flavored sugar like interfaces and API (“Application Procedural Interface”)
scheme extensions like callbacks.
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Main “top” object is the automatically generated TB module. It instances generic “objects” like
interfaces, DUT module and test program. Only the latter is by design subject to being replaced
at compile-time to implement different set of constraints, hence different scenarii.

2.3 First chunk of SystemVerilog code
A  SystemVerilog  code  representation  of  our  testbench  structure1 is  like,  trimmed-down  for
clarity's sake:
module tb_top;
  parameter simulation_cycle = 10;
  
  bit SystemClock;

  // Program.
  test test_program ( apbi, ahbmvis, ahbsvis );
    
  // Interfaces.
  hmatrix1_apb_i   apbi          ( SystemClock ); // APB config
  hmatrix1_ahbm_vi ahbmvis [0:1] ( SystemClock ); // AHB master (virtual)
  hmatrix1_ahbs_vi ahbsvis [0:1] ( SystemClock ); // AHP slave  (virtual)
  
  // DUT.
  hmatrix1 dut (
    // ...
  );
  
  // Clock.
  always #(simulation_cycle/2) SystemClock = ~ SystemClock;
endmodule

Unsurprisingly,  a  SystemVerilog  testbench  is  not  so  different  from  its  Verilog  parent.  It
instanciates likewise the DUT and generates the system clock the “old way” but also makes use
of pure SystemVerilog constructs like program and interfaces. We can see from this first code
excerpt that a port-less2 VMM SV TB has the following roles:

• define system clock3

• instance ad'hoc interfaces

• instance DUT and – if applicable – connect its signals to interfaces

• instance test program and connect it to interfaces

We will take a closer look at all these constructs in subsequent sections.

1 VMM “TESTBENCH INFRASTRUCTURE” chapter, p 103

2 VMM Rule 4-13, p 112

3 VMM Rule 4-15, p 114
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3 Testbench architecture

3.1 Interfaces (part I)
Interfaces are low-level instances which reside between DUT module and test program. At first
sight,  we'll  need  at  least  master,  slave  and monitor  kind of  interfaces  for  which  driving  &
sampling mechanism as well as sheer pin directions are most likely to be different. As per VMM
paradigm, test program instances transactors, in turn connected to interfaces. We chose to use
slave and monitor interfaces – i.e., instead of a direct connection – for coherency's sake and
because we needed to glue Verilog '95 flavored IPs.

Our IP RTL source actually does not use interfaces at  all,  mainly because of “sub-optimal”
support by some synthesis CAD tools. TB module is consequently also in charge of gluing IP
Verilog '95 pin-oriented connection paradigm with SystemVerilog interface-oriented one:
module tb_top;
  // ...
  
  // Interfaces.
  hmatrix1_apb_i   apbi          ( SystemClock ); // APB config
  hmatrix1_ahbm_vi ahbmvis [0:1] ( SystemClock ); // AHB master (virtual)
  hmatrix1_ahbs_vi ahbsvis [0:1] ( SystemClock ); // AHB slave  (virtual)
  
  // DUT.
  hmatrix1 dut (
    .hclock      ( SystemClock       ),
    
    .haddr_ml0   ( ahbmvis[0].haddr  ),
    .haddr_ml1   ( ahbmvis[1].haddr  ),
    .haddr_ram0  ( ahbsvis[0].haddr  ),
    .haddr_ram1  ( ahbsvis[1].haddr  ),
    .hburst_ml0  ( ahbmvis[0].hburst ),
    .hburst_ml1  ( ahbmvis[1].hburst ),
    .hburst_ram0 ( ahbsvis[0].hburst ),
    .hburst_ram1 ( ahbsvis[1].hburst ),
    // well, you get the picture...
  );
  
  // ...
endmodule

Anyway, It seems like we have to make a detour to understand a bit more the test program in
order to properly define our interfaces.

3.2 Test program
The test program defines configuration, constraints on transaction object and callbacks.  Code
wise, it is like:
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program test (
  hmatrix1_apb_i   apbi,
  hmatrix1_ahbm_vi ahbmvis [0:1],
  hmatrix1_ahbs_vi ahbsvis [0:1]
);
  // Definition of subclasses and callbacks.
  class env_hmatrix1_config extends hmatrix1_config;
    // ...
  endclass
  
  class env_ahb_data extends ahb_data;
    // ...
  endclass
  
  class env_ahb_master_xactor_callbacks extends ahb_master_xactor_callbacks;
    // ..
  endclass
  
  // Core.
  initial begin
    static env the_env = new ( apbi, ahbmvis, ahbsvis, "00-basic" );
  
    // Configure...
  
    the_env.run ();
  
    $finish;
  end
endprogram

We're still not too high, abstraction speaking. We've not even encountered the dreaded “vmm_”
class prefix but this is not going to last. As we can clearly see, a test program is all about kicking
off an “environment” instance4, provided the objects it operates upon have been properly defined
class-wise, since all customization is done in VMM through sub-class and callback concepts.
Agreed, we have cheated a bit knowing in advance our  env instance actually operates – this
could  count  as  yet  another  API  OO  concept  extension  –  on  env_hmatrix1_config,
env_ahb_data and env_ahb_master_xactor_callbacks classes.

Bottom line is, to further understand our testbench we need to poke further into this env beast in
order to know how it operates, on what kind of objects and how it could be customized to define
scenarii.

3.3 Environment
The environment  object  is  derived class-wise  from its  vmm_env father.  It  is  roughly a  big
compound sequencer operating on  inter-related object instances. To be true to OO analysis, this
class needs a twofold definition, namely one for data and another one for behavior.

4 VMM “SIMULATION CONTROL” section, p 124
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Data

The environment object instance is defined by its properties' values. Most of these properties are
“handles” to potentially arrayed object instances. Actual definition of testbench structure is done
by defining which instance – of what class – talks to which other instance(s). 

Transactions are object instances from an atomic  generator – i.e., an object factory – fed to a
master  transactor through a dedicated point-to-point communication medium5, a  channel. The
master  systematically  copies  received  transactions  to  the  scoreboard through  callbacks.  An
alternative design would be to put an extra monitor set on masters' side interface to be free from
this  carbon-copy  operation  and  allow  for  replacement  of  “fake”  transactor  by  a  “real”
implementation IP6.  I  believe we will  probably switch to this approach when VIP issues are
solved as we will see later on.

We chose to split monitor functionality from slave one. This would likewise allow later on the
replacement of a mock transactor by a real instance. We did not do the same split on masters'
side mainly because of transactions. Master transactors receive aggregated transactions from the
generator. We wanted to instance VIP monitors on slaves' side which feature the ability to report

5 VMM “TRANSACTION-LEVEL INTERFACES” section, p 171

6 VMM Suggestion 5-18, p 226
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aggregated  transactions.  Eventually,  scoreboarding would  be  a  mere  one-to-one  cross-check
between masters' and slaves' recorded transactions.

The following figure defines the masters' side instance chains (from generator to transactor), the
slaves' side (transactor and monitor in parallel) and the scoreboard as the focal point:

The generator is an object factory which generates streams – i.e., sequences – of randomized
objects. This is both a simple and powerful approach as we'll see later on a section dedicated to
transactions.

Behavior

The environment is triggered from the test program by a simple run task invocation. This task
iteratively sequences through all test stages7. Each stage is defined by DWIM-named methods
like gen_cfg, build, reset_dut, cfg_dut, start, wait_for_end, stop, cleanup
and report. As per VMM book8, defining our custom environment is all about subclassing all
– or part of – these methods as suggested in the following boilerplate code:

7 VMM “SIMULATION CONTROL” section, p 124

8 VMM Rules 4-30 & 4-31, p 128
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class env extends vmm_env;
  // Properties.
  // ...
  
  // Bootstrap.
  task run ();
    super.run ();
  endtask
  
  // Stages.
  function void gen_cfg ();
    // Call superclass counterpart.
    super.gen_cfg ();
    
    // Customization starts here!
    // ...
  endfunction
  
  // ...
endclass

3.4 Interfaces (part II)
Virtual interfaces

A  bus  matrix  has  –  by  design  –  a  replicated  interface  schema.  We  wanted  to  respect  this
particularity by using virtual interfaces9 and thus be able to connect each AHB transactor to its
virtual interface counterpart. We therefore instanced an array of virtual interfaces talking to an
array of  transactor  objects.  Each transactor  was in  turn connected  to  its  matching interface
through ad'hoc constructor call:
for ( int i = 0 ; i < masters.size ; i++ ) begin
  ahb_master_channels[i] = new ( "ahb_master_channel", ... );
  ahb_master_xactors[i]  = new ( ahbmvis[i], ahb_master_channels[i], ... );
end

We initially wanted to have an associative array of transactor instances because each master or
slave is actually named at chip and RTL configuration levels. Indeed, “foo[''arm0'']” would have
been clearer than “foo[0]” (i.e., a mental indirection level less, it never hurts sparing braincells a
bit  anyway)  but  SystemVerilog  specification  only  supports  arrayed (with  integer  indices)
interfaces  instances  and  not  hashed (with  string  indices)  ones.  We  nevertheless  kept  this
indirection by including the following automatically generated code snippet:
string masters[$] = { "ml0", "ml1" };
string slaves[$]  = { "ram0", "ram1" };

string ahbmvii[*];
string ahbsvii[*];

`define populate_ahbmvii_hash ahbmvii["ml0"] = 0; ahbmvii["ml1"] = 1;
`define populate_ahbsvii_hash ahbsvii["ram0"] = 0; ahbsvii["ram1"] = 1;

Modports and clocking blocks

Hot topics about  interfaces are  modports10 and clocking blocks11.  They were used to  further
constrain  the  rather  lax  all-wire  interface  definition  scheme  which  eventually  leads  to  the

9 VMM Rule 4-108, p 169

10 VMM Rules 4-9 & 4-10, p 110-111

11 VMM Rules 4-10, 4-11 & 4-12, p 111-112
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dreaded,  unrestricted all-inout connection  scheme  (i.e.,  check  out  the  “Notice: Ports
coerced to inout, use -notice for details” message from VCS). Three kinds
of modports / clocking blocks combo were actually needed and used:

• TB-like (reversed DUT direction-wise) and clocked (except asynchronous reset pin). 

Used with master transactors for TB driving and sampling purposes.

• DUT-like and unclocked.

Used with slave transactors.

• All-in and unclocked.

Used with monitor transactors.

Modports and clocking blocks were invaluable as sanity checks per se and because it forced us to
precisely define our TB architecture by answering the rather straightforward question: who talks
to whom and through which medium?

Interfaces as methods holders?

Interfaces – as per SystemVerilog LRM – allow for function and task definition. As we'll see
later on in this paper, makeshift transactors had to be coded in order to cope with lack of SV+OV
interoperability.  What  had been coded at  BFM (“Bus Functional  Model”)  class-level  (i.e.,  a
master transactor wiggling DUT pins through an interface) could have been abstracted further by
delegating such low-level operations to interface tasks or function calls. Anyway, one aim of this
whole pipe cleaning was to eventually be able to use “out of the box” VIP objects and not losing
time devising tedious pieces of code like AHB monitors. This is definitely no trivial task and we
are not a software company anyway...

3.5 Transactors
Mediation-oriented devices

Transactors12 are mediators between an abstract representation of a transaction (i.e., an object)
and its physical expression through temporal, protocol-compliant pin wiggling. We coped with
three kinds of transactors, namely master, slave and monitor. A master transactor for example
usually receives object instances – again, transactions  are objects – sent via a channel (i.e., a
queue) and “transcode” its content into timed waveforms via an interface (modport or clocking
block pin wiggling or yet another layer of abstraction through method calls). In other terms, they
react  to  transactions  and  act  through  interfaces.  Note  a  monitor  transactor  has  exactly  the
opposite role. It spies wiggling pins, tries to decipher beats and eventually aggregates bursts to
be sent – usually to the scoreboard – either via a channel or through a callback13.

Transactors are a key concept in VMM abstraction scheme. They are usually meant – at least in
Synopsys world – to be VIP instances. Problem is, SystemVerilog – under its VCS 2005.06-SP1
implementation  –  did  not  talk  very  well  with  OpenVera  modeled objects  like  VIP.  We
consequently had to  code our own master,  slave and monitor makeshift  transactors.  Writing
AHB-Lite compliant masters and slaves was not too hard, although we had to code features like
controlled ability to respectively deliver busy or unready states. The real challenge was to write
the monitor transactor. Coding a monitor is a bit akin to writing a parser. Both operate on a
stream and try to recognize sequences in order to build higher-level constructs, here an object

12 VMM “TRANSACTORS” section, p 161

13 VMM Recommendation 5-48, p 249
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instance. But the monitor – acting on a real time stream – cannot possibly use conventional
parser  techniques  such  as  back-tracking  or  lookahead.  Since  our  transactors  were  definitely
intended to be transient, we decided to simplify the code to be written by reporting atomic-level
transactions only. E.g.,  one INCR8 master transaction would expect 8 SINGLE counterparts,
actually from an unbroken INCR8 on slave's side or maybe two consecutive INCR4 for example.
Monitor-wise,  this  would not  matter.  The scoreboard would then eventually be in  charge to
establish the link between both sides: one to many relationship, (un)broken stream, etc.

The master transactor

A master transactor is essentially a big dispatch machine waiting forever. It is generic because
each transactor instance waits on its channel14 and reacts accordingly on its virtual interface.
Both are properties defined by constructor's call: channel is connected to generator, interface to
DUT.  Another  way  to  improve  the  transactor's  genericity  is  by  embedding  tasks calls  (aka
“callbacks”) at  key points15 within  main execution loop. Callbacks are then to be registered
during env::build stage by calling superclass' append_callback method.
task ahb_master_xactor::main ();                       // AHB_MASTER CLASS
  super.main ();
  
  forever begin
    ahb_data xaction;
    
    `vmm_callback ( ahb_master_xactor_callbacks,       // PRE-PEEK CB
      pre_peek_callback ( this ) );
    
    i_channel.peek ( xaction );
    
    `vmm_callback ( ahb_master_xactor_callbacks,       // PRE-DISPATCH CB
      pre_dispatch_callback ( this, xaction ) );
    
    case ( xaction.xact_type )
      ahb_data::IDLE  : idle;
      ahb_data::WRITE : wiggle_pins ( xaction, 1 );
      ahb_data::READ  : wiggle_pins ( xaction, 0 );
    endcase
     
    `vmm_callback ( ahb_master_xactor_callbacks,       // PRE-GET CB
      pre_get_callback ( this ) );
    
    i_channel.get ( xaction );
  end
endtask

// Meanwhile, in another file...

function void env::build ();                           // ENV CLASS
  super.build ();

  // ...

  for ( int i = 0 ; i < masters.size ; i++ ) begin
    env_ahb_master_xactor_callbacks callback = new ( scoreboard );
    
    ahb_master_xactors[i].append_callback ( callback );
  end
endfunction

14 VMM Rule 4-111, p 172

15 VMM Rules 4-154 & 4-159 +  Recommandations 4-155, 4-156, 4-157 & 4-158, p 198-199
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This is actually an extension of the concept of API – albeit an usual one in the software world –
for genericity's sake. I mean, in OO paradigm, an object encapsulates private data and provides
public methods. Hence one key to use an object is knowing its set of properties (ID, type, public
or  private,  etc.)  and  associated  methods  (constructor,  accessors,  mutators,  etc.)  In  VMM
methodology we also need to know when (i.e., at which code stage or milestone) and with which
prototype callback functions (i.e., `vmm_callback macro call) could be overridden. Callbacks
are virtual methods pertaining to a subclass of vmm_xactor_callbacks class16. Since – and
unlike some other languages – SystemVerilog functions are not treated as first-class citizens,
using this  `vmm_callback trick17 – with  this handle to calling transactor18 – is the only
generic  way to  inject  code into a  method without having to  subclass  (again)  vmm_xactor
subclass' virtual functions.

DIY atomic monitor l imitations

As seen above, we started with the intention of coding a rather lightweight monitor transactor in
the true DIY (“Do It Yourself”) tradition. One way of keeping it lightweight was to report atomic
(i.e., beat-wise) transactions only. Problem is, this works well enough as long as you do not care
about data integrity or slaves' side broken streams.

Data integrity is about checking if data to-be-written fed on masters' side eventually reached
slaves' side, or vice-versa in the case of a read operation. As per AMBA protocol, a data phase
begins after an address phase has been seen. For example, data is shifted by one cycle with
reference to control when HREADY is stuck to high. This means last datum is to be fetched from
subsequent  transaction  result  in  an  atomic  scheme.  Although  post-processing  of  simulation
stored results could indeed aggregate full-blown transactions from atomic ones (refer to “Master
aggregated vs slave atomic transactions” figure on page 19), we decided not to waste time coding
such a workaround.

Slaves' side broken streams are another issue to cope with. Although, atomically speaking, each
beat of a burst (expanded on masters' side) can easily be correlated with its atomic slaves' side
beat  counterpart,  knowing  for  example  that  an  INCR16 (master-wise)  was  broken  into  two
INCR8 (slave-wise) indeed matters because it reflects key configurable arbitration features of
our bus matrix like not allowing any master to hold the bus for too long.

Bottom line is, what we craved for was VIP availability. We eventually got stuck because of our
own makeshift transactors limitations. We then decided to work these around using Verilog VIP
instances (i.e., Vera bootstraps) to – at last – have real transactions reported. But this tweaking
had a  price,  namely  an  extra  Vera  dependency (thus  simulation  resources overhead)  and  a
significant decrease in our abstraction level (arrayed object instances were replaced by single
module  instances  +  initial  blocks  +  ugly  `define macros).  Refer  to  “Verilog  DW  VIP
workaround”  appendix  on  page  25  for  a  code  chunk  sample  of  such  a  workaround
implementation.

DW VIP issues

At the time of writing this paper, we also had problems with DW VIP monitor about slave bus
events happening without any HSEL asserted from the matrix. It seems like this is a side-effect
of a VIP feature by which the monitor only cares to read HSEL value(s) prior to its start call.
Sadly,  this  conflicts  with  one  (too?)  clever  re-arbitration  saving  feature  of  our  bus  matrix.

16 VMM Rule 4-159, p 199

17 VMM Rule 4-163, p 200

18 VMM Rule 4-162, p 200
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Indeed, DW VIP monitor is by design meant to be connected to a single bus, in turn potentially
connected to more than one slave (hence the static HSEL sampling scheme). But for system-on-
chip architectures mainly based on a bus matrix backbone – read: all our designs – we would
have liked to connect one monitor per slave bus and have a  dynamic HSEL sampling scheme.
This blocking issue has been duly reported to Synopsys R&D. From a conference call with R&D
persons, it appeared that DW VIP was not designed as a point-to-point monitoring device but
rather as a bus – in the AMBA sense of the word – oriented one. Indeed, the former may be left
unselected  while  the  former  should  not.  One  suggested  workaround  –  currently  under
investigation – is about gating HTRANS with HSEL on slaves' side.

Last,  as yet another last resort alternative, we replaced our slave SV transactor with its VIP
implementation (same workaround trick as above) but DW VIP slave only features beat-level
watchpoints. Shifted data is nevertheless handled correctly but we faced other problems trying to
have actual HTRANS values for broken streams analysis' sake.

3.6 Transactions
Objects

A  transaction  is an  object  instance  in  VMM  paradigm19 whereas  other  transaction-level
methodologies would rather define it as a mere method call20. Being by essence more abstract but
also more memory consuming, objects can be streamed over channels (e.g., from generator to
transactor) or stored within any container-like object (e.g.,  a queue in a scoreboard). Objects
fundamentally define a namespace with associated methods and properties.

Methods  are  usually  constructors,  accessors  and  mutators.  They  are  also  at  the  very  least
facilities like display, copy or compare routines (this is demanded and detailed in the VMM
book21) but can encompass other service functions like the  reckoning of addresses based upon
base address and burst type for example.

19 VMM Rule 4-53, p 140

20 Contradicts VMM Rule 4-54, p 141

21 VMM Rules 4-76 & 4-77, p 155
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Properties define an instance, i.e., in OO terminology VMM objects are said to be “mutable”.
Although OO speaking instance properties define a “state”, we can  functionally  discriminate
these attributes in three groups, depending on their role:

• carry the “payload”

• control transactor behavior

• ease up scoreboarding

The payload part is quite straightforward. For example, to model an AMBA transaction, some
involved signals protocol-wise (like HBURST, HSIZE, etc.) would have to be stored, the object
acting like a mere envelope, in order for the end-of-chain BFM to temporally “unroll” these –
generating  on-the-fly  other  control  signals  like  HSEL if  needed –  to  carry  out  physical  pin
activity.

Other properties were on the other hand dedicated to transactor behavior control, for example to
randomly force a  master into a  locked access or to make it  response with busy wait  states.
Properties such as locked and busied also ease-up scoreboarding since they allow for cross-
coverage with payload-oriented properties.

Scoreboarding also  requires  a  set  of  dedicated  properties.  For  example,  sender_n and
receiver_n are  used  to  respectively  store  master  sender  number  (remember,  master
transactors are arrayed instances) and intended slave number. Both integers are reckoned by –
configuration-dependent – address-space indirection. Only  sender_n is used on slaves' side.
Both properties are heavily used to perform master-to-slave correlations at scoreboard-level but
are also invaluable for subsequent cross-coverage operations.

Our ahb_data class is an extension of vmm_data class. Property-wise, it is reduced to:
// Payload:
rand hxact_t      xact_type;  // READ, WRITE or IDLE
rand haddr_t      addr;
rand hdata_t      data [$];   // queued to cope with burst type
rand hburst_t     burst_type; // SINGLE, INCR4, WRAP4, etc.
rand hsize_t      xfer_size;  // BYTE, HALFWORD or WORD
rand hprot_t      protection; // 0x????

// Scoreboarding:
     hdata_t      atomic_data       = 0;
     hburst_t     atomic_burst_type = ahb_data::SINGLE;

     int unsigned sender_n;
     int          receiver_n = -1;
     time         birth_time;

// Transactor control (and a bit of scoreboarding too):
     bit          locked    = 0;
     bit          proted    = 0;
     bit          busied    = 0;

Scenarii

From the TB point of view, a simulation run implements one or more scenario, hopefully related
to  a  test  plan  item.  As  previously  stated,  each  scenario  is  a  stream of  constrained  random
instances, hence the CRT qualifier for this whole testing paradigm. Depending on which kind of
VMM scenario  generator  base  object  is  chosen  (read:  “subclassed”),  TB might  enforce  one
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scenario22 (i.e.,  vmm_atomic_gen) or a set  of scenarii23 (i.e.,  vmm_scenario_gen).  We
have only used the  former kind of generator so far24.

Scenario generators are often referred to as “object factories”. They are indeed akin to factories,
restlessly replicating constrained random variations of template objects25. Each instance of the
whole randomized stream is actually an instance of the same base class and thus has its relevant
properties  randomized.  Atomically  speaking,  each  instance  pertains  to  a  same  “possibilities
space” delimited by its base class constraints, in turn a subset of AMBA legal possibilities, in
turn a subset of all potential combinations of decorrelated properties:

Our environment works on a subclass of ahb_data, namely env_ahb_data. The former is
generic across corner-cases while the latter is meant to be tweaked on a corner-case by corner-
case basis. For example, on one hand our env_ahb_data has the following corner-case driven
set of constraints:

22 VMM Recommendation 5-23, p 231

23 VMM Recommendation 5-24, p 234

24 VMM “Which Type of Generator to Use?” section, p 244

25 VMM Rule 5-6, p 216
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// Configuration dependant.
static constraint addresses_per_slave {
  addr inside {
    ['h00000000:'h000fffff],
    ['h00100000:'h001fffff],
    ['h00200000:'h002fffff]
  };
}

// For debugging purposes.
static constraint tiny_data {
  foreach ( data[i] ) data[i] < 1024;
}
static constraint no_wrap {
  burst_type inside { SINGLE, INCR4, INCR8 };
}
static constraint words_only {
  xfer_size inside { WORD };
}

While on the other hand our  ahb_data implements AMBA-driven constraints or TB-related
restrictions26:
constraint word_boundary_multiple_of_sixteen {
  addr [ 2: 0] == 3'b0;
  addr [31:30] == 2'b0;
}

constraint less_than_words_or_words_only {
  xfer_size inside { BYTE, HALFWORD, WORD };
}

constraint the_number_of_the_beats { // FIXME no INCR support
  burst_type != INCR;
  burst_type != INCR -> data.size inside { 1, 4, 8, 16 };
}

constraint data_size_from_burst_type {
  burst_type inside { SINGLE         } -> data.size ==  1;
  burst_type inside { INCR4,  WRAP4  } -> data.size ==  4;
  burst_type inside { INCR8,  WRAP8  } -> data.size ==  8;
  burst_type inside { INCR16, WRAP16 } -> data.size == 16;
}

constraint bursts_cannot_pass_1K_boundary { // WORD only
  data.size ==  1 -> addr[9:0] < 1020;
  data.size ==  4 -> addr[9:0] < 1008;
  data.size ==  8 -> addr[9:0] <  992;
  data.size == 16 -> addr[9:0] <  960;
}

Testbench-related restrictions are actually unsupported or yet unimplemented features.

Constraint solving tricks

We encountered  constraint  solver  issues  with  data  queue  size  versus  burst  type.  The  latter
actually defines the size of the former. Burst type has to be randomized, then data queue size and
last data queue content. This forced us – soundly advised by our Synopsys support person – to
use  cryptic  “+ntb_solver_mode=1”  run-time switch  because  the  constraint  solver  is  by
default in a “fast” mode which choked on the following subset of constraints:

26 VMM Rule 4-80, p 157
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constraint the_number_of_the_beats { // FIXME no INCR support
  burst_type != INCR;
  burst_type != INCR -> data.size inside { 1, 4, 8, 16 };
}

constraint data_size_from_burst_type {
  burst_type inside { SINGLE         } -> data.size ==  1;
  burst_type inside { INCR4,  WRAP4  } -> data.size ==  4;
  burst_type inside { INCR8,  WRAP8  } -> data.size ==  8;
  burst_type inside { INCR16, WRAP16 } -> data.size == 16;
}

Another  issue  was  uncovered  about  burst  (starting)  address  versus  burst  type.  Since  bursts
lengths cannot possibly exceed a 1K boundary (as per AMBA specification), we had to code the
following constraint:
constraint bursts_cannot_pass_1K_boundary { // WORD only
  addr[9:0] + ( 4 * data.size ) < 1024;     // FIXME thrashes CS
}

Problem is, this makes the constraint solver go wild and completely  de-correlate  data.size
versus  burst_type. We had to (temporarily?) replace it – at the cost of INCR transactions
support – by:
constraint bursts_cannot_pass_1K_boundary { // WORD only
  data.size ==  1 -> addr[9:0] < 1020;
  data.size ==  4 -> addr[9:0] < 1008;
  data.size ==  8 -> addr[9:0] <  992;
  data.size == 16 -> addr[9:0] <  960;
}

Scoreboard

The scoreboard was coded in our experiment as a passive instance collecting events from masters
(duplicated from transactors) and slaves (as decoded by monitors) during the whole simulation27.
No such cheesy thing as a parallel scoreboard reactively driving a feedback loop with generators
by tweaking constraints in RT based upon instant coverage results. We did not currently see the
need  for  such  a  sophisticated  technique,  but  maybe  we  were  just  not  advanced  enough  in
verification lore...

Our scoreboard performed “a posteriori” cross and sanity checks during the report stage of the
run. As we've already seen earlier, one issue to solve was the plain (i.e., aggregated) vs atomic
(i.e.,  beat-wise)  nature  of  reported  transactions,  depending  on  which  “side”  of  the  matrix
triggered the actual recording.

When the simulation is complete, our scoreboard has two queues of transactions to handle. We
first intended to use associative arrays but we did not find any relevant way to actually hash
transactions.  Having potentially  any number of concurrent masters  issuing random addresses
transactions ruled out  a simple address-based algorithm. Also,  any hashing scheme loses  by
essence the order in which transactions were actually pushed. This would be a problem when
tackling verification of arbitration features for which relative order of transactions – or broken
sub-transactions on slaves' side – would be of utmost concern. Downside of this approach is the
O(N2) search time, although it is actually cut down a bit by taking transaction “birth time” into
account to ignore a loop item or break out of the loop.

Adoption of VIP monitor could enable us to revise this accumulation based scheme. A dynamic
one-to-many transaction-wise comparison could be implemented instead – thanks to aggregated
transaction reports – which would in turn allow for matched objects freeing during simulation.

27 VMM “FEEDBACK MECHANISM” section, p 277
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3.7 Functional coverage
The scoreboard did  a  quantitative study on  our  transactions  sets.  Functional  coverage28 is  a
means to have a qualitative feedback on generated transactions.

We defined a  covergroup within our  ahb_data class.  This gave useful results but had the
limitation of covering transactions from masters' point of view. For example, there is currently
no possible coverage on slave-driven events like unready states which a slave may legally insert
within its response stream. Such intermediate states are not currently handled by our monitor
implementation and thus do not leave a trace transaction-wise at scoreboard level. This could
have been  implemented  but  would  have  somehow conflicted  with  the  essentially  beat-level
nature  of  our  scoreboard.  Unlike  slaves'  side  transactions,  busy  master  instances  are  tagged
through  a  dedicated  property  because  such  transactions  are  driven  from masters'  side.  The
busied boolean-typed property is hence populated a priori by a generator and not a posteriori
by a monitor. From a coverage point of view, we indeed know a master transaction contained
busy states  but  we don't  know neither  how many were inserted nor when these busy states
occurred. The busied property is not used at scoreboard level but at coverage level only.

28 VMM “COVERAGE-DRIVEN VERIFICATION” chapter, p 259
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Coverpoints

An excerpt from our ahb_data covergroup29 definition follows:
covergroup xactions_cg ();
  xact_types : coverpoint xact_type {
    bins idle = { IDLE  }; bins read  = { READ  }; bins write = { WRITE };
  }
  rw_xactions : coverpoint xact_type {
    bins rw = { READ, WRITE };
  }
  addrs : coverpoint addr {                            // From configuration.
    bins to_slave_0__ml0 = { ['h00000000:'h000fffff] };
    bins to_slave_1__ml1 = { ['h00100000:'h001fffff] };
  }
  burst_types : coverpoint burst_type {
    bins         single                 = { SINGLE };
    bins         incr4                  = { INCR4  };
    bins         wrap4                  = { WRAP4  };
    bins         incr8                  = { INCR8  };
    bins         wrap8                  = { WRAP8  };
    bins         incr16                 = { INCR16 };
    bins         wrap16                 = { WRAP16 };
    illegal_bins not_yet_supported_incr = { INCR   };
  }
  xfer_sizes : coverpoint xfer_size {
    bins         bytes                 = { BYTE     };
    bins         halfwords             = { HALFWORD };
    bins         words                 = { WORD     };
    illegal_bins not_implemented_by_ip = { TWO_WORDS, FOUR_WORDS_LINE,
      EIGHT_WORDS_LINE, SIXTEEN_WORDS_LINE, THIRTYTWO_WORDS_LINE };
  }
  protections : coverpoint protection {
    wildcard bins data_access        = { 'b???1 };
    wildcard bins priviledged_access = { 'b??1? };
    wildcard bins bufferable         = { 'b?1?? };
    wildcard bins cacheable          = { 'b1??? };
  }
  locked : coverpoint locked {
    bins   locked = { 1 };
    bins unlocked = { 0 };
  }
endgroup

Coverpoints  are  rather  straightforward  to  define.  Most  coverpoints'  bins  are  mere  lists  of
enumerates or integer ranges but some others are defined using the clever wilcard scheme. A
semantically interesting feature is reached through the illegal_bins keyword. We chose to
use this keyword – instead of its ignore_bins cousin – because we indeed intended to rule-
out certain possibilities but with an extra twist30. We also wanted to convey the idea of categories
that were not to be cared about because of either lack of IP implementation or missing / yet to be
coded TB features. In this respect there is a not-so-obvious relationship between the constraints
and  the  covergroups  respective  lineups.  We  sometimes  faced  difficulties  trying  to  interpret
coverage results just because our constraints and covergroups definitions were out of phase with
one another.

29 VMM Rule 6-7, p 266

30 As per SystemVerilog LRM, populating an illegal_bins kind of bin triggers a run-time error.
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Cross-coverage

Cross-coverage was invaluable to answer questions like “did I exert all possible burst types in
both read and write mode?” or “what proportion of locked transfers did the run perform?” Cross-
coverage  actually  allowed us  to  close  the  loop  (see  “Coverage-driven  CRT paradigm loop”
illustration on page  3) by incrementally – and manually31 – tweaking our set of constraints or
increasing our simulation runtimes. For example, as per our ahb_data class:
  // Extra coverpoints needed by cross-coverage (from configuration).
  coverpoint sender_n {
    bins        master_0__ml0 = { 0 };
    bins        master_1__ml1 = { 1 };
    ignore_bins irrelevant    = { [3:$] }; // sender_n is a natural
  }
  coverpoint receiver_n {
    bins         slave_0__ram0      = { 0 };
    bins         slave_1__ram1      = { 1 };
    ignore_bins  irrelevant         = { [$:-2], [2:$] };
    illegal_bins to_undefined_slave = { -1 }; // receiver_n is an integer
  }

  // Cross-covers.
  rw_vs_bt           : cross rw_xactions, burst_types;
  locked_rw          : cross rw_xactions, locked;
  masters_to_slaves  : cross sender_n, receiver_n;
  locked_rw_masters  : cross rw_xactions, locked, sender_n;
  xfer_size_masters  : cross xfer_sizes, sender_n;
  burst_type_masters : cross burst_types, sender_n;
  rwi_vs_burst       : cross xact_types, burst_types;

Closed coverage events DB

An issue with coverage is about the event proprietary database. Being binary and proprietary
forced us to use front-end text or HTML translators bundled with VCS. We would have preferred
having a more open kind of database – ideally with a formal API – in order to be able to post-
process it from a high-level language like Perl.

31 VMM Recommendation 6-26, p 277
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4 Yet under construction
Our  experiment  is  obviously  not  yet  completed.  On  one  hand  some  items  are  not  yet
implemented because we're still learning SV language or AMBA protocol tricks. On the other
hand some others are gated by VCS or VIP improvements.

Benchmarking the used resources – memory and runtime – is also still on the “to do” list. In this
respect, we want to assert for sheer memory usage with special care on potential memory leaks
issues.

4.1 As per VCS 2005.06-SP1 release
The following items are currently still to be coded:

• Handle ERROR response at master and slave levels. We are still not convinced we
should  code it  in  our  makeshift  transactors since VIP slave  does  not  support  this
feature either.

• Clean APB configuration scheme through a dedicated transactor. This is not as simple
as it seems since DUT configuration impacts the scoreboard behavior with reference
to high-level arbitration features such as broken streams on slaves' side.

• Datum check (linked to VIP monitor HSEL issue). Using VIP monitor should allow a
straightforward one-to-one cross-check (including data integrity).

• Support INCR bursts (partially linked to constraint solver issues).

4.2 As per VCS 2006.06-B release
VCS 2006.06-B pre-release was made available to us at the beginning of March. We are quite
eager to try our VIP monitor flavored TB but we believe we will still have to cope with the
HSEL issue. We hope the gating of HTRANS by HSEL on slaves' sides will be a usable solution
for this blocking issue.

We will then have to replace all our transactors by their respective VIP counterparts. Replacing
our homemade transactors by VIP ones will dramatically change our testbench on an object-by-
object basis but not structurally speaking. It seems like genericity starts to pay off sooner than
expected.

First and foremost, our ahb_data class – the actual underlying testbench backbone – will have
to be changed into a subclass of  dw_vip_ahb_master_transaction instead of current
vmm_xactor. As a corrolary, its properties types and identifiers are going to change since DW
VIP uses formally32 constructed identifiers like, for example:
DIY       -> VIP
addr      -> m_bvAddress  : bv  ~ bit vector
xact_type -> m_enXactType : en  ~ enumerated
data      -> m_bvvData    : bvv ~ bit vector vector (array of bv)

Likewise,  we  will  have  to  turn  our  transactors  into  dw_vip_ahb_<whatever>_rvm
subclasses (replace <whatever> with master, slave and monitor).

32 Using “Hungarian notation”, refer to Wikipedia for more.
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5 Conclusions & acknowledgments

5.1 Conclusions
Overall

One goal of this whole experiment was to pipe-clean a new verification paradigm. We eventually
wanted  to  be  able  to  hand  out  the  RTL designer  (or  the  verification  engineer)  a  complete
testbench boilerplate generator together with directives about how use-case defining constraints
could be “just” tweaked to implement more and more test plan items. Obviously, the experiment
is not yet complete but we know the VMM+SV+VIP combo is close to be suitable for our needs.
We are confident – once VCS 2006.06 and an improved/worked-around DW VIP monitor are
available – about being able to use a very powerful and modular solution indeed.

Yet,  one  aspect  we  still  have  to  explore  is  not  a  technical  but  a  human  one.  We are  still
wondering about the pre-required mindset in order to properly use such a sophisticated software-
based approach. On one hand the RTL designer knows (too?) well his IP but could balk at very
abstract concepts. On the other hand a dedicated verification engineer knows (too?) little about
an IP but is very comfortable with complex software tricks. We believe we will have to try to
hand out the whole testbench structure to an RTL guy when this experiment is stable enough in
order to see if he may – or may not – be left to his own devices.

VMM

Despite its steep learning curve, our experiment confirms that VMM is a solid methodology
indeed. As an advice, users might want to start with RVM trainings – to be kindly asked to a
Synopsys support person –  rather than reading the huge VMM book in the first place.

SystemVerilog

VCS support of SystemVerilog was good enough. Yet, we sometimes encountered “SVNYS:
SystemVerilog not yet supported” error messages but overall, SystemVerilog is a
rich language and its VCS implementation was redundant enough to allow for not-so-inelegant
workarounds. Alas, we did not have time enough to check these uninplemented features against
latest 2006.06-B release.

AMBA VIP

We believe the availability of 2006.06 release with SystemVerilog+OpenVera interoperability is
mandatory for our needs. Although – compared to USB for example – AMBA is not a very
complicated protocol, coding decent transactors is no trivial task especially when VIPs exist, are
field-proven and loaded with features, RVM channel integration among others.

Bottom line is, we needed the VIPs to really get the job done.

As a last minute update on this topic, VCS 2006.06-B was made available to us beginning of
March. This was a little too late to significantly alter the present paper content but this was
nevertheless very good news indeed. We hope we will be able to add a slide or two on this most
wanted interoperability feature before the final slide deadline!

5.2 Acknowledgments
A big hand to our local Synopsys support. Thanks to Karim and Fabian for their support. We
appreciated your technical skills and short response times!
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6 Appendix

6.1 References
The following materials were used during our experiment:

• Verification Methodology Manual for SystemVerilog (aka “VMM book”)

• DesignWare AHB Verification IP Databook

• AMBA specification (Rev 2.0) – ARM IHI 0011A

• SystemVerilog 3.1a Language Reference Manual (Accelera's Extensions to Verilog)

• Reference Verification Methodology Tutorial (from VCS tree)

• Reference Verification Methodology User Guide (ditto)

6.2 Acronyms & links
• AHB: “Advanced High-performance Bus” (from AMBA) for high frequency peripherals

• AMBA  : “Advanced Microcontroller Bus Architecture” a bus protocol from ARM

• APB: “Advanced Peripheral Bus” (from AMBA) for low-power peripherals

• BFM: “Bus Functional Model”

• DW VIP  : “DesignWare Verification IP”

• HDL: “Hardware Design Language”

• HDVL: “Hardware Design and Verification Language”

• LRM  : (SystemVerilog) “Language Reference Manual”

• OO  : “Object Oriented” one of the 4 main computer science paradigms

• OpenVera  , OV: open source hardware verification language, evolution of proprietary Vera

• Perl  : “Practical Extraction and Report Language” the swiss-army chainsaw

• RVM  : “Reuse Verification Methodology” ancestor of VMM, Vera/OpenVera-based

• SystemVerilog  , SV: an HDVL (IEEE P1800 standard), extension of Verilog HDL

• VCS: simulation tool from Synopsys

• VMM  : “Verification Methodology Manual” RVM evolution, SV-flavored
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6.3 Verilog DW VIP workaround
This is a code sample of our OV+SV workaround via a direct Verilog instance.
`include "VmtDefines.inc"

`include "AhbMonitorDefines.inc"
`include "AhbMonitorMessages.inc"

`define AHB_MONITOR_0_INSTANCE ahb_monitor_0 // VIP to be ref'ed thru macro

// Point-to-point DW VIP usage workaround
wire [1:0] htrans_to_monitor_0 = ahbsvis[0].hsel ? ahbsvis[0].htrans : 2'b00;

ahb_monitor_vmt `AHB_MONITOR_0_INSTANCE (
  .hclk      (           SystemClock         ),
  .hresetn   (           hresetn             ),

  .haddr     ( {  32'b0, ahbsvis[0].haddr  } ),
  .hburst    (           ahbsvis[0].hburst   ),
  .hmastlock (           1'b0                ),
  .hprot     (           ahbsvis[0].hprot    ),
  .hrdata    ( { 992'b0, ahbsvis[0].hrdata } ),
  .hready    (           ahbsvis[0].hready   ),
  .hresp     (           ahbsvis[0].hresp    ),
  .hsize     (           ahbsvis[0].hsize    ),
  .htrans    (           htrans_to_monitor_0 ), // ahbsvis[0].htrans
  .hwdata    ( { 992'b0, ahbsvis[0].hwdata } ),
  .hwrite    (           ahbsvis[0].hwrite   ),
  .hsel      ( {  15'b0, ahbsvis[0].hsel   } ), // 16'h01 is actually enough

  .hgrant    (           16'h01              ),
  .hlock     (           16'h00              )
);

initial begin
  int tm_handle;
  int main_stream = 0;

  @( posedge SystemClock );

  `AHB_MONITOR_0_INSTANCE.new_ahb_transaction_monitor ( tm_handle,
    "XFER_DIR READ, WRITE; XFER_TYPE NSEQ, SEQ; XFER_SIZE SIZE32" );

  `AHB_MONITOR_0_INSTANCE.set_config_param ( main_stream,
    `DW_VIP_AMBA_AHB_LITE_PARAM,           1 );            // AHB-Lite
  `AHB_MONITOR_0_INSTANCE.set_config_param ( main_stream,
    `DW_VIP_AMBA_HDATA_WIDTH_PARAM,       32 );            // default
  `AHB_MONITOR_0_INSTANCE.set_config_param ( main_stream,
    `DW_VIP_AMBA_CHECK_PROTOCOL_PARAM,     0 );            // default
  `AHB_MONITOR_0_INSTANCE.set_config_param ( main_stream,
    `DW_VIP_AMBA_SLAVE_PRESENT_PARAM, 16'h01 );

  `AHB_MONITOR_0_INSTANCE.start;
end
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