
Xavier Caron

A bottom-up approach
to top-down VMM

Xavier Caron

Design Flow Engineer

Atmel Rousset

Xavier Caron 2

The big idea behind
IP verification

• An IP is a reusable chip cornerstone
– We therefore must have confidence in it

• Confidence is built from passed tests
– Since only tests actually exercise the IP

• Tests do not prove the code is right
– Tests are simulated & incomplete stimuli sequences

• Tests just prove when the code is wrong
– But they are usually very good at it

• Bottomline: prove RTL code matches intent
– For – and alas only for – the use cases we exercise

Xavier Caron 3

The big idea behind
IP verification (cont'd)

• We cannot possibly think about all cornercases
– This is too daunting a task for our brain

• Besides, writing tests rapidly becomes...
– Tedious, repetitive, boring and... irritating!

• We need a framework / methodology
– To let the simulator “push” an IP in any possible way

– While retaining enough control on the “any” concept
Constrained

Random Generation

Functional
Coverage

Many runs w/
different seeds

Identify
holes

Tune
constraints

Minimal Code
Modifications

Directed
Testcase

Xavier Caron 4

(Smart quote)

• Insight from a real code guru
“Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition, not
smart enough to debug it.”

-- Brian Kernighan

• One more challenge
– Verifier & RTL coder are supposedly different persons

• How to accommodate for this neuronic deficit?
– The brute-force way (~ target all possible combos)

– The abstracted way (~ use a strict methodology)

Xavier Caron 5

Our VMM experiment

• Main goal: pipe-clean a SVTB+VMM+VIP flow
– We already had a promising Vera+RVM+VIP one

• Side goal: assert for RTL designer acceptance
– Or bootstrap a dedicated (proto)verification group

• We picked up a not-too-complex IP
– Our proprietary AHB-Lite “HMATRIX1” bus matrix

HM1
Master 0 (AHB) Slave 0 (AHB)

Slave N' (AHB)

Config (APB)

Master N (AHB)

Xavier Caron 6

Testbench at a glance

• TB building blocks
– DUT

– Interfaces

– Test program
(within an “env” object)

• TB roles
– Define system clock

– Instance ad'hoc interfaces

– Instance DUT and connect its signals to interfaces

– Instance test program and connect it to interfaces

I
m. HM

P
test

I
s.

TestBench

test program ~ env

AHB bus

interface

P : Program
I : Interface
HM : HMATRIX1
m. : master
s. : slave

Xavier Caron 7

Interfaces

• 3 kinds to be used (a bit of wishful thinking)
– TB, clocked & reversed DUT-wise

– DUT, unclocked & I/O as is

– Monitor, unclocked & all-in

• Avoid the async. all-inout wiring scheme
– Use clocking blocks / modports to constrain further

• Clocking blocks
– For timing & synchronization requirements purposes

• Modports
– To enforce correct I/O wiring

• Consistent glue to '95 style verilog IPs

Xavier Caron 8

Test program

• Transactors
– Xaction to “bus” transcoders

• Channels
– P2P communication media

• Generators
– Object (~ xaction) factories

• Monitors
– Bus spies

• Scoreboard
– The focal point

C
m.

X
m.

I
m. HM I

v

M
s.

X
s.

I
s.

SB

TestBench

test program ~ env
G

m.

callback

transaction

interface

P : Generator
C : Channel
X : Transactor
I : Interface
M : Monitor

SB : Scoreboard
HM : HMATRIX1

m. : master
s. : slave

Xavier Caron 9

Milestones:
to transactors

C
m.

X
m.

I
m. HM I

v

M
s.

X
s.

I
s.

SB

TestBench

test program ~ env
G

m.

callback

transaction

interface

?

?

?

Xavier Caron 10

Transactors

• Mediators between 2 kinds of representations
– Abstract, borne by xactions (queued class instances)

– Physical, borne by wires (AHB “bus” pin wiggling)

• We needed 3 kinds of xactors
– Namely master, slave and monitor (cf interfaces)

• Master
– Transcodes instance properties into pin wiggling

• Slave
– Reacts to pin wiggling and updates its own state

• Monitor
– Spies pin wiggling to decipher xactions for the SB

Xavier Caron 11

Transactors (cont'd)

• VIP was not usable with VCS 2005.06-SP1
– SystemVerilog / OpenVera interoperability is missing

– Required VIPs are mainly coded in OpenVera

• We had to code our own makeshift xactors
– With much less features than their VIP counterparts

– We devised them as transient pieces of code anyway

• The hardest one is – by far – the monitor
– Real-time on-the-fly xaction decoding is a tough job

• Our monitor has thus one big limitation
– It only reports beat-wise xactions

– Beat-to-burst aggregation delegated to SB instead

Xavier Caron 12

Milestones:
to generators/channels

C
m.

X
m.

I
m. HM I

v

M
s.

X
s.

I
s.

SB

TestBench

test program ~ env
G

m.

callback

transaction

interface?

?

Xavier Caron 13

CONSTRAINT
SOLVER

exhaustive

AMBA legal

constraint-wise

POSSIBILITIES
SPACE

ahb_data
class

properties
+

constraints

ahb_data
instance

properties
+

constraints

Constructs
instance Parses

constraints

Chooses
randomly

Populates
properties

Returns
constrained random instance

Constrained Random
Testing paradigm

• A generator is an instance factory
– Restlessly constructs, populates & queues xactions

Xavier Caron 14

Milestones:
to scoreboard

C
m.

X
m.

I
m. HM I

v

M
s.

X
s.

I
s.

SB

TestBench

test program ~ env
G

m.

callback

transaction

interface

?

Xavier Caron 15

Scoreboard

• Performs a “mere” quantitative 1-to-1 match
– A posteriori treatment (no RT feedback loop)

– On aggregated (master) vs atomic (slave) xactions

• Still does a “first stage” check only
– Beat-wise integrity (~ atomic)

– Only reflects correct wiring implementation

– Does not take “beat pertains to burst” into account

• Will eventually need a “second stage” check
– Burst-wise consistency (~ aggregated)

– Should reflect higher-level arbitration features

– Like broken bursts, latency, etc.

Xavier Caron 16

Scoreboard (cont'd)

• Dataflow diagram

MASTER
XACTOR

ahb_data
instance

INCR4
Xaction

Unrolled

Busied

CC'ed

Beat #4

Beat #3

Busy #1

Beat #2

Beat #1

SCOREBOARD
INSTANCE

Queued

HMATRIX1
INSTANCE

SLAVE
XACTORWiggled

Beat #4

!Ready #1

Beat #3

Busy #1

Beat #2

Beat #1

Unreadied

MONITOR
XACTOR

Spied

Wiggled

Replied

Wiggled

Xavier Caron 17

Milestones:
to functional coverage

C
m.

X
m.

I
m. HM I

v

M
s.

X
s.

I
s.

SB

TestBench

test program ~ env
G

m.

callback

transaction

interface

Xavier Caron 18

Functional coverage

• CRT paradigm is coverage-driven
– To avoid “blind” tests

– To close the “run-cover-tweak” verification loop

• Coverage is a qualitative study of xactions
– Used as a metrics

– Gives a statistical summary of a simulation run

• To actually augment functional coverage
– Run longer simulation (if possible)

– Relax constraints (within allowed legal frame)

– Beware of potential memory issues!

– Since a posteriori SB processing implies accumulation

Xavier Caron 19

Current status

• Yet to be done
– Switch to VCS 2006.06-B (features SV/OV interop.)

– Some changes needed but not structural ones:

Replace our makeshift xactors by VIP instances

Replace our own xaction by VIP one

– Implement missing / gated features (INCR, etc.)

– Use assertions to formalize assumptions SB relies on

• Eventually
– Hand out the whole TB to a “lucky” RTL win^Hcoder

– For usability review (cf “minimal code modifications”)

– And... Acceptance!

Xavier Caron 20

Conclusions
(albeit partial ones)

• VMM
– Sensible, but has a very steep learning curve

– You do not want to start by 1st reading VMM book

– Use RVM tutorial & one day training instead

• VIP
– Has desired aggregated xaction reporting features

– But was not designed to handle P2P AHB connections

– Yet works if HTRANS is gated by HSEL (workaround)

• SVTB
– Support via VCS 2005.06-SP1 was more than decent

– Rich enough, allows for not-so-inelegant workarounds

Xavier Caron 21

Questions?

?

